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ABSTRACT
When a user has watched, say, 70 romance movies and 30 action
movies, then it is reasonable to expect the personalized list of rec-
ommended movies to be comprised of about 70% romance and 30%
action movies as well. This important property is known as cal-
ibration, and recently received renewed attention in the context
of fairness in machine learning. In the recommended list of items,
calibration ensures that the various (past) areas of interest of a user
are reflected with their corresponding proportions. Calibration is
especially important in light of the fact that recommender sys-
tems optimized toward accuracy (e.g., ranking metrics) in the usual
offline-setting can easily lead to recommendations where the lesser
interests of a user get crowded out by the user’s main interests–
which we show empirically as well as in thought-experiments. This
can be prevented by calibrated recommendations. To this end, we
outline metrics for quantifying the degree of calibration, as well as
a simple yet effective re-ranking algorithm for post-processing the
output of recommender systems.
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1 INTRODUCTION
Recommender systems provide a personalized user experience in
many different application domains, including online-shopping,
social-networks and music/video streaming.

In this paper, we show that recommender systems trained to-
ward accuracy (e.g., ranking metrics) can easily generate lists of
recommended items that focus on the main areas of interest of
a user–while the user’s lesser areas of interest tend to be under-
represented or even absent. Over time, such unbalanced recom-
mendations carry the risk of gradually narrowing down the user’s
areas of interest–which is similar to the effect of echo chambers
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or filter bubbles. This problem also applies to the case of several
users sharing the same account, where the interests of the less
active users within the same account may get crowded out in the
recommendations. We demonstrate this effect in several thought
experiments in Section 2 as well as in experiments on real-world
data in Section 6.

Calibration is a general concept inmachine learning, and recently
experienced a resurgence in the context of fairness of machine
learning algorithms. A classification algorithm is called calibrated
if the predicted proportions of the various classes agree with the
actual proportions of data points in the available data. Analogously,
in this paper the goal of calibrated recommendations is to reflect
the various interests of a user in the recommended list, and with
their appropriate proportions. To this end, we outline metrics for
quantifying the degree of calibration in Section 3. In Section 4, we
propose an algorithm for post-processing a given ranked list of rec-
ommendations with the objective of making it (close to) calibrated.
In Section 5, which discusses related concepts and literature, we
also outline that diversity in its typical sense of minimal similarity
or redundancy among the recommended items is different from
calibration. In our experiments on real-world data in Section 6,
we demonstrate the effect that the lesser interests of users can get
crowded out easily. We then show the effectiveness of our proposed
approach in achieving (close to) calibrated recommendations.

For the ease of exposition in this paper, we will paraphrase ’users
who interact with items’ as well as ’categories of items’, using ’users
who play movies’ and ’genres’. This paper naturally caries over to
the general case, see also the last paragraph in Section 4 for further
generalizations.

2 MOTIVATING EXAMPLE
In this section, we outline a thought experiment that illustrates a
core mechanism that can cause the list of recommended items to
be unbalanced. We develop it in three steps, starting from the most
extreme scenario.

We consider the typical offline setting throughout this paper,
where the data set is comprised of historical user-item-interactions,
and it is split into a training and test set (e.g., based on time, or
randomly); the evaluation objective is to achieve the best accuracy
in predicting which items the user interacted with in the test set,
which is typically quantified in terms of ranking metrics. This
setting has the advantage that it is easy to implement, and applicable
to publicly available data sets for collaborative filtering.

In our running example, we assume in this section that a user
has played 70 romance and 30 action movies in the offline training
data: our objective is to generate a list of, say, 10 recommended
movies such that we maximize the probability of predicting the test-
movies of this user (i.e., the held-out movies played by the user in
the offline test data). This maximizes the recommendation accuracy,
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e.g., ranking metrics. For simplicity of argument, let us also assume
in this section that the two genres are mutually exclusive (i.e., a
movie is either in the action or romance genre, but not in both).

2.1 Class Imbalance
In the first and most extreme scenario, let us assume in this sub-
section that we only know the user’s preference for genres, but we
have no additional information on the individual movies within
each genre. This problem then becomes analogous to the imbal-
anced classification problem in supervised machine learning in the
absence of any additional information: it is well known that the
best prediction accuracy is obtained by always predicting the label
of the majority class. In a binary classification problem where we
only know that 70% of the data points have the label +1, and the
remaining 30% points are labeled -1, in the absence of any additional
information, it is best to predict the label +1 for all data points–and
we can expect to be correct for 70% of the data points. In contrast,
if we predicted the labels +1 and -1 randomly with probabilities
70% and 30% (with which they occur in the data), we can expect the
predicted labels to be correct for only 0.7 · 70% + 0.3 · 30% = 58% of
the data points.

Translated to our recommendation example, in the absence of
any additional information, we can expect to obtain the best accu-
racy on our test data if we recommend 100% romance movies to
the user, and not a single action movie.

Our assumption in this subsection, namely that we have no addi-
tional information available, is obviously very extreme. In the real
world, there will be more data available–however, data will always
be limited or noisy, and hence this effect may still be present to
some degree. Note that this problem is independent of any particu-
lar machine learningmodel trained for accuracy. In our experiments
on real-world data in Section 6, we illustrate that indeed there is
the risk of unbalanced recommendations: the genres where the
user has only a slight interest can easily get crowded out when
optimizing the recommender system for accuracy, while the main
areas of the user’s interests can get amplified.

Another perspective of this problem is in terms of biased rec-
ommendations: even in the ideal case that the available data are
free of any biases, the training toward accuracy on limited data can
introduce a bias in the recommended list, i.e., it is biased toward
the main interests of the user.

Conversely, this suggests–not surprisingly–that the objective of
making more balanced or calibrated recommendations is expected
to reduce recommendation accuracy.

2.2 Varying Movie Probabilities
This section develops a slightly more involved thought experiment:
we now assume that each movie i has a different probability p (i |д)
of being played if user u decided to play from genre д. From above,
we already know the probabilities p (дr |u) = 0.7 and p (дa |u) =
0.3 that user u plays a movie from genre дr (romance) and дa
(action), respectively. Assuming here for simplicity that the two
sets of movies regarding the two genres are mutually exclusive,
the probability that user u plays movie i in genre д is given by
p (i |u) = p (i |д) ·p (д |u). For best prediction accuracy, we hence have
to find the 10 movies i with the largest probabilities p (i |u) of being

played by the user. Let us consider the most probable action-movie
iдa,1(i.e., ranked first among the action movies), and the 10th most
probable romance movie iдr ,10, and we obtain

p (iдr ,10 |u)

p (iдa,1 |u)
=
p (iдr ,10 |дr )

p (iдa,1 |дa )︸        ︷︷        ︸
≈1/2.1

·
p (дr |u)

p (дa |u)︸   ︷︷   ︸
= 0.7

0.3≈2.33

≈
2.33
2.1
> 1, (1)

wherewe determined the value of 2.1 from theMovieLens 20Million
data set [13].1 As we can see, also in this variant of the example,
the 10th romance title has a higher probability of being played by
the user than the best action title. Hence, in terms of accuracy,
the optimal 10 titles to recommend in this example are again all
romance titles, and not a single action title.

2.3 Latent Dirichlet Allocation
This running example got inspired by the Latent Dirichlet Alloca-
tion model (LDA) [5], which describes a user’s process of selecting
a movie in a two-step procedure: the user first selects a genre (or
topic) and then a movie (or word) within the selected genre. We
mention LDA for three reasons.

First, if we assume in this section that the real-world user truly
follows this two-step procedure of selecting a movie, then the LDA
model is the correct model. When the LDAmodel is trained, it hence
is able to capture the correct balance of each user’s interests, and
with their correct proportions. Hence, balanced recommendations
can be expected when following its generative process, where the
list of recommended titles is generated iteratively by appending
one title at a time: first, a genre д is sampled from the learned genre-
distribution p (д |u) for user u, followed by sampling a movie i from
the learned distribution p (i |д) regarding genre д. Sampling movies
results in lower accuracy compared to ranking movies according
to p (i |u), where p (i |u) =

∑
д p (i |д) · p (д |u). The reason is that also

movies i with small p (i |u) may be sampled to be near the top of the
recommended list for user u. In contrast, ranking is deterministic
and guarantees that the movies i with the largest probabilitiesp (i |u)
that user u likes them, will be at the top of the recommended list,
which obviously can be expected to achieve the best accuracy on
test data if the learned probabilities p (i |u) are correctly estimated.
Unlike sampling, however, ranking unfortunately does not maintain
the balance in the recommended list–we illustrated this in our
example in the previous section, where the movies were also ranked
by their probabilities p (i |u).

Second, note that the problem of unbalanced recommendations
is not restricted to the case when explicit categories (e.g., genres) are
used, but also applies to the case when latent topics or embeddings
are used–LDA is such a model.

Third, the problem of unbalanced recommendations may arise
irrespective of the fact whether a movie belongs to a single genre
(hard assignment), or whether it partially belongs to several genres,
like in the LDA model.

1We further assumed for simplicity of the argument in Eq. 1 that the most prob-
able movie in each genre has the same conditional probability, i.e., p (iдr ,1 |дr ) =
p (iдa ,1 |дa ). If this is not the case, one can simply include an additional factor in the
equation.
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3 CALIBRATION METRICS
In this section, we outline metrics that quantify the degree of cali-
bration of a list of recommended movies, with respect to the user’s
history of played movies. To this end, we consider two distributions,
both of which are based on the distribution of genres д for each
movie i , denoted by p (д |i ), which are assumed to be given:
• p (д |u): the distribution over genres д of the set of moviesH
played by user u in the past:

p (д |u) =

∑
i ∈H wu,i · p (д |i )∑

i ∈H wu,i
, (2)

wherewu,i is the weight of movie i , e.g., how recently it was
played by user u. See also Eq. 7 for a regularized version.
• q(д |u): the distribution over genres д of the list of movies
recommended to user u:

q(д |u) =

∑
i ∈I wr (i ) · p (д |i )∑

i ∈I wr (i )
, (3)

where I is the set of recommended movies. The weight
of movie i due to its rank r (i ) in the recommendations is
denoted by wr (i ) . Possible choices include the weighting
schemes used in ranking metrics, like in Mean Reciprocal
Rank (MRR) or normalized Discounted Cumulative Gain
(nDCG).

There are various established methods for determining if these two
distributions, q(д |u) and p (д |u), are similar. As to account for the
fact that these distributions are estimated from finite data, com-
prised of N recommended movies andM movies played by the user,
respectively, one may carry out a statistical hypothesis test, with
the Null hypothesis that the two distributions are the same. This is
typically cast as an independence test regarding the multinomial
distribution over two random variables: the genres д, and a variable
reflecting the two sets of movies, I and H . Given that N or M
might actually be very small numbers, this may call for exact tests,
like the multinomial test or Fisher’s exact test. These tests may,
however, be computationally prohibitive in practice. A computa-
tionally efficient alternative are asymptotic tests, if applicable, like
the G-test or χ2-test.

Instead of computing p-values, we suggest to ignore the effect
of the finite data sizes N andM , and to directly compare the distri-
butions p (д |u) and q(д |u). To this end, we use the Kullback-Leibler
(KL) divergence as calibration metric CKL (p,q) in this paper:

CKL (p,q) = KL(p | |q̃) =
∑
д

p (д |u) log
p (д |u)

q̃(д |u)
, (4)

where we use p (д |u) as the target distribution. If q(д |u) is similar
to it, CKL (p,q) takes small values. Given that the KL divergence
diverges if q(д |u) = 0 and p (д |u) > 0 for a genre д, we instead use

q̃(д |u) = (1 − α ) · q(д |u) + α · p (д |u) (5)

with a small α > 0, so that q ≈ q̃. In our experiments, we used
α = 0.01. The KL-divergence has several properties desirable for
quantifying the degree of calibration in the context of recommen-
dations:

(1) it is zero in case of perfect calibration: p (д |u) = q̃(д |u).

(2) it is very sensitive to small discrepancies between p (д |u) and
q̃(д |u) when p (д |u) is small. For instance, if a user played
a genre only 2% of the time, recommending it only 1% is
considered a larger discrepancy by the KL divergence, than
if a genre was played 50% but recommended only 49% of
times.

(3) it favours more uniform, and hence less extreme distribu-
tions: as illustrated in Table 1, if a user played a genre 30%
of the time, recommendations with 31% of this genre are
considered better than with 29%.

These properties ensure that the genres that the user rarely played
will also be reflected in the recommended list with their correspond-
ing proportions. Instead of the KL-divergence, one may also use
other f-divergences in general, like the Hellinger distance between
p and q, CH (p,q) = H (p,q) = | |

√
p −
√
q | |2/2, where | | · | |2 denotes

the 2-norm of the probability-vector (across genres). The Hellinger
distance is well defined in the presence of zero values; it also is
sensitive to small discrepancies between p and q when p is small,
however, to a lesser degree than the KL-divergence is, as we found
in our experiments.

The overall calibration metricC is obtained by averagingC (p,q)
across all users.

4 CALIBRATION APPROACHES
The calibration of recommendations is a list-property. As many rec-
ommender systems are trained in a pointwise or pairwise manner,
one may not be able to include calibration into the training. This
suggests to re-rank the predicted list of a recommender system in
a post-processing step, a common approach of calibrating machine
learning approaches [10, 30]. As to determine the optimal set I∗ of
N recommended movies, we use maximum marginal relevance [6]:

I∗ = arg max
I, |I |=N

(1 − λ) · s (I) − λ ·CKL (p,q(I)) (6)

where λ ∈ [0, 1] determines the trade-off between two terms: (1)
the scores s (i ) of the movies i ∈ I predicted by the recommender
system, where s (I) =

∑
i ∈I s (i ). Note that one may also use a

monotone transform of eachmovie’s score. (2) the calibrationmetric
(see Eq. 4), where we have explicitly denoted the dependence of q
on the set of recommended movies I, which we optimize in Eq. 6.
Also note that better calibration entails a lower calibration score,
so that we have to use its negative in this maximization problem.

The trade-off between accuracy-focused recommendations and
calibration can be controlled by λ in Eq. 6.We consider calibration as
a crucial property of the recommended list, as discussed in Section
5, which hence calls for a rather large value of λ.

Finding the optimal set I∗ of N recommended movies is a com-
binatorial optimization problem and NP-hard in general. In the
Appendix, we outline that the greedy optimization of this optimiza-
tion problem is equivalent to the greedy optimization of a surrogate
submodular function. It is well known [17] that the greedy opti-
mization of submodular functions achieves a (1 − 1/e ) optimality
guarantee, where e is Euler’s number. The greedy optimization
starts out with the empty set, and iteratively appends one movie i
at a time: at step n, when we already have the set In−1 comprised of
n− 1 movies, the movie i that maximizes Eq. 6 for the set In−1 ∪ {i}
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is added as to obtain In . This greedy approach has additional ben-
efits. First, it yields an ordered / ranked list of movies, instead of
an (unsorted) list. Second, the resulting list at each step of this
greedy approach is (1 − 1/e ) optimal among the lists of equal size.
Even though we may generate a ranked list of N movies, in the
real-world, the user might initially see only the first n < N recom-
mendations, e.g., the remaining movies may become visible in the
view-port only after scrolling. Apart from that, the user may scan
the list of N movies from top to bottom. In both cases, the greedy
optimization of submodular functions automatically ensures that
each sub-list of the first n movies (n < N ) of the recommended list
is (1 − 1/e ) optimal.

Note that this approach allows for a weighted membership of
a movie i to possibly several genres д, as p (д |i ) is used in Eqs. 2
and 3. Moreover, if one likes to calibrate the recommended list
with respect to several different categories (e.g., genres, subgenres,
languages, movie-vs.-TV-show, etc.), a separate calibration-term
C
(category)
KL may be added to Eq. 6 for each category, with the de-

sired weight/importance λ(category) . The resulting sum of several
submodular functions is still a submodular function, and hence the
optimization problem remains efficient.

5 RELATED CONCEPTS
Calibration has long been used inmachine learning, mainly in classi-
fication, see, e.g., [10, 30], where simple post-processing approaches
were often found to be effective. In recent years, calibration received
renewed attention, in particular in the context of fairness of ma-
chine learning algorithms.

In the literature of recommender systems, the focus has been
on various metrics besides accuracy, e.g., see [21] for an overview,
among which diversity is closest to calibration.

5.1 Diversity
In this section, we first compare diversity and calibration, followed
by a discussion of related work.

Diversity as defined in most papers, i.e., minimal redundancy
or similarity among the recommended items, helps avoid recom-
mendations with 100% romance movies in our running example:
in a world with only two genres of movies, the most diverse rec-
ommendations would contain 50% romance and 50% action movies.
In a world with additional movie-genres (where the user has only
watched 70 romance and 30 action titles), diversity can be increased
by recommending also titles from other genres that the user has not
watched yet, like children’s movies or documentaries. Diversity is
not guaranteed, however, to increase the fraction of recommended
action titles from 0% to about 30% as to reflect the user’s degree of
interest in our example. Only if the trade-off between accuracy and
diversity is chosen well, one may obtain well-calibrated recommen-
dations. This may be difficult to achieve in practice, however, as
this trade-off may be different for each user. This illustrates that
the objective of diversity is not directly aimed at reflecting a user’s
various interests with the appropriate proportions. This is a main
difference to calibrated recommendations.

A second key difference is that diversity, as it may include genres
that the user has not played in the past, may help a user escape from
a possible filter bubble. This important property is not provided

by calibrated recommendations as outlined so far. This motivates
a simple extension to calibrated recommendations, such that also
titles from genres outside of the user’s past interests are included
into the recommended list: let p0 (д) denote a prior-distribution that
takes positive values for all genres д as to promote diversity in the
recommendations–two obvious choices are the uniform distribution
or the average over all users’ genre distributions. The weighted
average of this diversity-promoting prior p0 (д) and the calibration-
target p (д |u),

p̄ (д |u) = β · p0 (д) + (1 − β ) · p (д |u), (7)

with tuning parameter β ∈ [0, 1], determines the trade-off be-
tween diversity and calibration. This extended calibration probability
p̄ (д |u) can be used in place of p (д |u) (see Eq. 2).

In many papers, a list is considered diverse if there is only a small
degree of redundancy or similarity among the recommended items.
A multitude of approaches has been proposed to generate such
kinds of diverse recommendations, e.g., [4, 15, 31, 32], including
determinantal point processes [8, 11], or submodular optimization,
e.g., [1, 2, 19].

A second line of research starts out with modeling the user’s
probability of choosing thenth item from the recommended list after
having not selected any of the n − 1 items ranked / displayed above,
i.e., a browsing model. This idea has resulted in the ranking metric
called expected reciprocal rank (ERR) [7], as well as in approaches
for generating a more diverse ranked list [20, 27].

Only few papers have addressed the important issue that rec-
ommendations should reflect the various interests of the user with
the correct proportions [9, 25, 26], which we will discuss in the
following.

The idea of proportionality was first proposed in [9] in the
context of diversifying search results. In [9], the proposed met-
ric, named DP, is essentially a modified squared difference between
the distributions p (д |u) and q(д |u). While it fulfills our property 1
for calibration metrics in Section 3, it does not exhibit the other
two properties: as illustrated in Table 1 for the target proportions
60%:40%, the more unbalanced recommendations with 7:3 titles in
the two genres receives the same value DP=1 as does the uniform
one with 5:5. Given that both deviate from the ideal recommen-
dations of 6:4 by one movie being in the other genre, 5:5 should
receive a better calibration score than 7:3 according to property (3)
in Section 3. Property (2) is also not fulfilled because DP=1 for a
deviation of 1 title is independent of how extreme the target distri-
bution is when 10 titles get recommended in Table 1–ideally the
score should be worse for the target distribution 70%:30%, as it is
more extreme than 60%:40%. Note that the KL-divergence fulfills
these properties in Table 1. In [9], the algorithm for generating
a proportional list utilizes a procedure for seat assignment after
an election, so that each party’s seats are proportional to their re-
ceived votes. They developed a probabilistic modification of this
procedure as to tackle the problem of items belonging to several
categories, and found this method to outperform the original one
in their experiments. In case that perfect proportionality cannot be
achieved, and an approximate solution with some deviations has
to be found, their algorithm may treat deviations differently than
their metric does, as they are conceptually unrelated. It is hence
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Table 1: Comparison of three calibration metrics for a given
target distribution p (д |u), and the genre counts n1/2 = N ·
q(д1/2 |u) in the recommended list of N movies. See Sections
3 and 5.1 for discussion.

(a) target distribution: 60% : 40%
N n1 : n2 CKL (Eq. 4) BinomDiv [26] DP [9]

5:5 0.0197 4.66·10−4 1.0
10 6:4 0.0 5.38·10−4 0.0

7:3 0.0221 4.62·10−4 1.0

(b) target distribution: 70% : 30%
N n1 : n2 CKL (Eq. 4) BinomDiv [26] DP [9]

6:4 0.0212 1.74·10−4 1.0
10 7:3 0.0 2.04·10−4 0.0

8:2 0.0275 1.69·10−4 1.0
69:31 2.31·10−4 7.78·10−35 1.0

100 70:30 0.0 7.91·10−35 0.0
71:29 2.36·10−4 8.39·10−35 1.0

not obvious if the approximate solution obeys properties desirable
in the context of calibrated recommendations.

In [25], personalized diversification is approached from the per-
spective of submodularity. While they propose a submodular ob-
jective function in Eq. 2 in [25] that is comprised of a log-sum
term–similar to Eq. 8 in our Appendix–, its connection to the KL-
divergence is not outlined in [25]. It hence remains unclear in [25]
that the actual goal of this submodular function is to recommend
the various item-categories proportional to their weights (e.g., CTR
in [25]).

Themetric proposed in [26], named BinomDiv, is carefully crafted
and fulfills properties (2) and (3) in Section 3: e.g., regarding the
target proportions 60%:40% in Table 1, the more extreme recom-
mendations with 7:3 receive a worse (lower) score than the more
balanced one with 5:5. These are the important properties for pro-
portionality. Their metric does not fulfill property 1, however, even
in a more relaxed sense of taking the same fixed value (instead
of 0) in case of perfect calibration: their metric can take on dif-
ferent values if p (д |u) = q(д |u), depending on the length of the
recommended list as well as on the distribution of the genres p (д |u),
see Table 1. This has two disadvantages: first, a given value of the
metric by itself does not provide a sense for how calibrated the
recommendations are–it only allows one to make relative com-
parisons regarding different recommended lists for a fixed user.
Second, given that each user tends to have a different distribution
of interests/genres, this metric cannot simply be averaged across
users as to obtain an aggregate metric. While the transformation of
this metric into a z-score for evaluation purposes does not seem to
be mentioned in the paper, its use in the algorithm is pointed out.
We also found that our computation of their metric suffered from
numerical underflow when the number of recommended movies
exceeded a couple of hundred–while this may not cause issues in
many applications, like top 10 recommendations, there are also sce-
narios where the number of recommended items is in the hundreds,
e.g., on the Netflix homepage. Apart from that, we note that the
idea of adding a prior, as we outlined earlier in this section, was

mentioned in [26]. Their algorithm is based on maximum marginal
relevance [6]. As their metric may not be submodular, however,
there may not be an optimality guarantee.

5.2 Fairness
In the field of machine learning, the importance of fairness has
recently grown dramatically, e.g., see [33] and reference therein
for a review. Fairness is concerned with avoiding discrimination
against certain persons or groups in the population, e.g., based on
gender, race, age, etc. It is typically concerned with the scores or
class labels predicted for individual persons in a population.

Various fairness criteria have been proposed in the literature,
including calibration, equal(ized) odds, equal opportunity, and sta-
tistical parity [12, 16, 33]. Using equalized odds as fairness-metric,
[12] proposed a post-processing approach, and [28] improved on
this by integrating fairness into the training objective.

In the context of collaborative filtering, it was discussed in [29]
that small sub-populations in the user-base (i.e., population im-
balance), as well as less active sub-populations (i.e., persons who
provide fewer ratings) may receive biased recommendations. Apart
from that, [29] focused on rating prediction and RMSE, instead of
the more relevant scenario of implicit feedback data and ranking
metrics.

In this paper, we consider a complementary notion of fairness:
instead of fairness regarding persons, we consider fairness concern-
ing the various interests of a user, with the goal to reflect them
according to their corresponding proportions. In the remainder
of this section, we outline why we deem the calibration criteria
particularly useful for this non-standard notion of fairness.

As shown in [16], calibration and equal(ized) odds / equal op-
portunity cannot be fulfilled (exactly nor approximately) at the
same time–except for two special cases: when the machine-learned
model makes perfect predictions (which does typically not hold in
real-world applications), or when the different groups of persons
(which all should be treated fairly) have the same base rate, i.e.,
the same fraction of positive classification-labels, which typically
does not hold in the real world, either. Given that a user typically
played genres with different proportions (like 70% romance and
30% action movies), the base rate of these two genres (or groups in
the fairness literature) is obviously different, and so are the average
scores predicted for the movies in these two genres. Hence, the
fairness criteria equal(ized) odds, equal opportunity and statistical
parity are not immediately applicable in our context. This moti-
vated us to focus on calibration as a suitable fairness criteria for
recommendations.

6 EXPERIMENTS
This section illustrates the proposed calibration metric (see Section
3) and calibration algorithm (see Section 4) in our experiments on
the MovieLens 20 Million data [13]. As outlined in [26], the various
metrics regarding diversity capture different properties, and the
corresponding algorithms perform well regarding the metric they
were developed for, but not necessarily with respect to the other
metrics. For this reason, we restrict ourselves in the remaining
space of this paper to illustrate that the proposed approach works
as expected.
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Figure 1: Histograms of calibration scoresCKL@50 of all test
users, with no (λ = 0) vs. increased calibration (see Eq. 6).
Lower CKL@50 is better.

Weused theMovieLens data, as it also contains genre-information
besides the rating-data. Implicit feedback data, however, are much
more abundant than rating data in most real-world applications.
We hence focus on implicit data, and follow the usual procedure of
simulating binary implicit feedback data (e.g., user played movie)
from the publicly available rating-data by retaining only ratings of
4 stars and higher, while dropping lower ratings. After eliminating
movies that had no genre information attached or were not played
by a user, the resulting data set was comprised of about 10 million
’plays’ with value 1 (instead of ratings) regarding about 21k movies
and 140k users. Typically several genres д are assigned to a movie
i in this data set–we assigned equal probabilities p (д |i ) to each
assigned genre д such that

∑
д p (д |i ) = 1 for each movie i . This is

then used to determine the genre-distributions p (д |u) and q(д |u) of
user u in Eqs. 2 and 3. We split these data into a training set (99% of
the play-data) and a disjoint test set with about 100,000 plays (1%
of the play-data), as this split-ratio was also approximately used in
the Netflix Prize data [3].

As to generate the baseline-recommendations, we learned a
weighted 50-dimensional matrix-factorization model on these train-
ing data following the usual approaches described in [14, 18, 23],
where we tuned the hyper-parameters, i.e., the L2-norm regular-
ization and the weight for the missing plays (negative sampling),
as to maximize recommendation accuracy (recall@50, e.g., see [21]
for its definition). In the following experiments, we compare the
recommendations produced by this baseline-model that was trained
to optimize accuracy, with the re-ranked recommendations gen-
erated by our approach outlined in Section 4 for different values
of λ, which controls the degree of calibration in Eq. 6. Given that
we find calibration an important property of the recommended list,
the default value in the presented experiments is λ = 0.99 unless
otherwise noted.

Regarding the baseline-recommendations of each user, we com-
puted the calibration metric CKL.2 Figure 1 shows the obtained

2In all our experiments, for simplicity we use no prior p0 in Eq. 7, and no weights in
the averages for p and q in Eqs. 2 and 3.

Table 2: Trade-off between ranking accuracy and calibration
metric CKL , as determined by λ in Eq. 6.

recall CKL

calibration @10 @50 @10 @50
none (λ = 0) 0.209 0.464 0.677 0.185
λ = 0.2 0.209 0.464 0.465 0.171
λ = 0.5 0.199 0.464 0.274 0.141
λ = 0.8 0.170 0.463 0.128 0.092
λ = 0.9 0.146 0.460 0.084 0.061
λ = 0.95 0.121 0.453 0.065 0.037
λ = 0.99 0.090 0.417 0.054 0.009
λ = 0.999 0.082 0.339 0.054 0.005

scores CKL@50 as a histogram over all test users: the wide range
of calibration scores CKL@50 in the baseline-recommendations
(λ = 0) indicates that different users experience vastly different
recommendation-qualities in terms of calibration. Figure 1 also
shows the effectiveness of the proposed greedy re-ranking ap-
proach: considerably better (lower) calibration scores CKL@50 are
achieved as λ is increased. It also illustrates that the degree of cal-
ibration can be controlled in a continuous way by changing the
value of λ.

The average values across all test users are summarized in Table
2: relative to the baseline (λ = 0), it shows that re-ranking with an
increased value of λ in Eq. 6 results in recommendations with better
calibration on average, but at the price of reduced accuracy (lower
recall), as expected (see Section 2.1). Table 2 also illustrates that, for
rather small values of λ, calibration can be improved considerably
while accuracy is reduced only slightly. Only for large value of λ, the
accuracy drops quickly. Also note that the valuesCKL@10 are larger
than CKL@50 because the genre-distribution is more constraint
(and hence less calibrated) if it is based on only 10 rather than 50
recommended movies. Moreover, CKL@10 improves considerably
for small values of λ (relative to no calibration) in Table 2, while
a larger λ is needed for notable improvements of CKL@50. At the
same time, recall@10 deteriorates a lot for larger values of λ, while
recall@50 is fairly constant up to around λ = 0.95. This suggests
that a useful strategy in practical application might be to change λ
from small to large values during the greedy re-ranking approach.
As a result, the top-ranked items of the re-ranked list would be
very similar to the original ranking, followed by items that would
increasingly cover the lesser areas of interest of a user.

Figure 2 shows the distribution of genres in the top 50 recommen-
dations for a test user chosen from the 10% sub-population where
the baseline-recommendations were very uncalibrated: while the
genres Drama and Adventure are over-represented in the user’s
baseline-recommendations (i.e., before calibration) relative to the
user’s play history, the user’s lesser interests, including the genres
Musical, Mystery, Thriller and Western, are essentially missing
from the baseline-recommendations. This illustrates that the rec-
ommender system may amplify the main areas of interest of a user,
while crowding out the user’s lesser interests. Figure 2 also shows
that this can be largely prevented by the proposed greedy approach
(with λ = 0.99 in Eq. 6): the re-ranked recommendations reflect the
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Figure 2: Genre-distribution of a user’s play-history (black),
and of the recommendations before (red/left) and after cali-
bration (green/right).

user’s various interests with their proportions much more closely.
Note, however, that recommendations that reflect a user’s past in-
terests may still keep this user in their personal filter bubble. For
this reason, it is important to use the extended calibration probability
in practical applications (see Section 5.1 and Eq. 7), which results
in recommendations that also cover the areas outside of a user’s
past areas of interest.

While it is crucial to ensure calibration for each individual user
(as exemplified in Figure 2), we now show aggregate results re-
garding the 10% sub-population of test users who received rec-
ommendations with the worst calibration. Figure 3 is obtained as
follows: for each user, we calculate the difference in the genre-
probabilities between the recommended list of 50 movies and the
user’s play-history. This difference is then averaged across all test
users, separately for positive and negative differences. In Figure 3,
the average genre-probability across all users’ play histories serves
as reference point, while the average positive and negative dif-
ferences determine the lengths of the intervals above and below
each reference point, respectively. If the recommendations are per-
fectly calibrated to each individual user’s play-history, then the
length of the intervals is zero. If the lower interval is larger than the
upper interval, this genre is under-represented in the recommen-
dations on average. Analogously, the upper interval is larger for
over-represented genres. If both intervals are of equal length, then
the genre is represented with the correct proportions on average
across all test users–however, the length of the intervals indicate
the average deviation for an individual user. Given that recommen-
dations should be calibrated for each individual user, it is desirable
that the intervals are small.

Figure 3 shows that the users played about 3% documentaries
on average, but the top-50 baseline-recommendations essentially
missed this genre completely (i.e., the lower red interval extends
all the way to zero, while the upper red interval is essentially of
zero length). Similarly, the users’ lesser interests, i.e., the genres
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Figure 3: Average over the 10% sub-population of test users
with the most uncalibrated recommendations: the mean
probability of each genre in the users’ play-histories (black);
the intervals reflect the average difference between the
genre’s proportion in the recommended list vs. in the play-
history of each user before (red/left) and after (green/right)
calibration. See text for details.

IMAX, Musical and Western, are also severely underrepresented
on average (the lower red interval extends to about zero as well).
At the same time, genres like Action, Adventure, Crime, Mystery
and Sci-Fi are mostly over-represented (the upper red interval is
larger than the lower red one).

Figure 3 also illustrates the results of the proposed greedy algo-
rithm (with λ = 0.99 in Eq. 6): now the various genres, including
the less popular ones, are well calibrated for each individual user
(the green intervals are smaller than the red ones). The various
interests of each user are hence reflected by the re-ranked recom-
mendations. Drama is the genre with the largest interval: it now
is slightly under-represented in the re-ranked recommendations
on average (the lower green interval is larger than the upper green
interval)–which allows for space in the recommended list as to
slightly over-represent the genres that pertain to the lesser areas
of interest of each user. This illustrates the effectiveness of the
proposed algorithm in generating calibrated recommendations that
reflect the various interests of each individual user.

7 CONCLUSIONS
In this paper, we showed that recommender systems that are trained
toward accuracy in the typical offline-setting may generate unbal-
anced recommendations, especially when the available training data
are limited or noisy. We motivated the importance of calibration as
an additional objective besides recommendation-accuracy. We out-
lined established metrics for quantifying the degree of calibration.
It is desirable that they are particularly sensitive to discrepancies
regarding the lesser areas of interest of a user, especially when such
an area of interest is completely missing from the recommended
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list. Moreover, we presented a simple yet effective greedy algo-
rithm, and outlined an optimality-guarantee due to submodular
functions. These approaches can be applied for post-processing
the recommendation-lists generated by recommender systems. We
also discussed the difference to diversity in its typical sense of
minimal similarity or redundancy among the recommended items.
Given that calibration is a property of the entire recommended
list, future improvements may be achieved by integrating calibra-
tion in the objective of listwise learning-to-rank approaches, and
by going beyond the typical offline-setting of training and testing
recommender systems, e.g., [24].

This paper took a user-centric view, i.e., the recommendations
were calibrated for each user. The complementary perspective is the
item-centric view, which we leave for future work: as to calibrate
the recommendations with respect to each item, one may consider,
for instance, whether an item that is recommended twice as often
as another item, is also consumed twice as often (across all the
users).
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APPENDIX
Here we show that the greedy optimization of Eq. 6 is equivalent to
the greedy optimization of a surrogate function that is submodular.
Loosely speaking, the concept of submodular functions may be
viewed as a generalization of non-decreasing concave functions to
set-functions (on a matroid).

We first split the calibration metric (Eq. 4) into its parts:

CKL (p,q)

= KL(p | |q̃) =
∑
д

p (д |u) log
p (д |u)

q̃(д |u)

=
∑
д

p (д |u) logp (д |u) −
∑
д

p (д |u) log q̃(д |u) (8)

= −H (p)︸ ︷︷ ︸
=const.

+ log
∑
i ∈I

wr (i )︸         ︷︷         ︸
=log

∑|I |
r=1 wr

−
∑
д

p (д |u) log
∑
i ∈I

wr (i )q̃(д |i ).

Regarding the last line, several remarks are in order. First, the
entropyH (p) refers to the user’s past plays, and hence is a constant
when optimizing for the setI of recommended movies. Second, and
equivalent to Eqs. 3 and 5, we here absorbed the regularization of
q̃(д |u) into each individual movie’s genre distribution q̃(д |i ) = (1 −
α ) ·p (д |i )+α ·p (д |u). This results in the last two terms in the last line
in Eq. 8. Given that the weightswr (i ) dependmerely on the rank r (i )
of movie i , and hence not directly on i , we have that

∑
i ∈I wr (i ) =∑ |I |

r=1wr , which thus is also a constant in the optimization problem
when the size of I is fixed. When the size |I | is not fixed, then
log
∑ |I |
r=1wr is a non-decreasing concave function of its size, and

hence a submodular function regarding sets. Moreover, also the
last term in Eq. 8 is a submodular function, see [22]. Hence, the
KL-divergence can be expressed as a difference of two submodular
functions [22].

In [22], it was proposed to use this last term in place of the
KL-divergence. This results in the new optimization problem:

I∗ = arg max
I, |I |=N

(1−λ) · s (I)+λ ·
∑
д

p (д |u) log
∑
i ∈I

wr (i )q̃(д |i ), (9)

which now is submodular, given that s (I ) =
∑
i ∈I s (i ) is modular,

and the sum of modular and submodular functions is submodular.
With the well-known (1 − 1/e ) optimality guarantee [17], we can
now greedily optimize this objective function: at each iterative step,
when we determine the next movie i to append, only sets of the
same size are considered, and hence the first two terms in Eq. 8
are constants, while only the last term depends on i . Hence, at
each greedy iterative step, both Eqs. 6 and 9 yield the same optimal
movie i∗. The only subtle point here is that the (1− 1/e ) optimality
guarantee refers to Eq. 9 due to its submodularity.
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