{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 2-高斯核函数" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "from sklearn import svm\n", "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "import scipy.io as sio" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# kernek function 高斯核函数\n", "def gaussian_kernel(x1, x2, sigma):\n", " return np.exp(- np.power(x1 - x2, 2).sum() / (2 * (sigma ** 2)))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.32465246735834974" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x1 = np.array([1, 2, 1])\n", "x2 = np.array([0, 4, -1])\n", "sigma = 2\n", "\n", "gaussian_kernel(x1, x2, sigma)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# load data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dict_keys(['__header__', '__version__', '__globals__', 'X', 'y'])\n" ] }, { "data": { "text/html": [ "
\n", " | X1 | \n", "X2 | \n", "y | \n", "
---|---|---|---|
0 | \n", "0.107143 | \n", "0.603070 | \n", "1 | \n", "
1 | \n", "0.093318 | \n", "0.649854 | \n", "1 | \n", "
2 | \n", "0.097926 | \n", "0.705409 | \n", "1 | \n", "
3 | \n", "0.155530 | \n", "0.784357 | \n", "1 | \n", "
4 | \n", "0.210829 | \n", "0.866228 | \n", "1 | \n", "